
Solid-Fluid Phase Coexistence of Hard Heteronuclear Dumbbells via Cell

Theory and Monte Carlo Simulation

S. C. Gay(a),(b), Paul D. Beale(b), James C. Rainwater(a)

(a) Physical and Chemical Properties Division, 838.08, National Institute of Standards and

Technology*, 325 Broadway, Boulder, CO 80303
(b) Department of Physics, University of Colorado at Boulder, Box 390, Boulder, CO 80309

* Contribution of the National Institute of Standards and Technology, not subject to

copyright in the United States.



ABSTRACT

We study the solid-fluid equilibria of hard heteronuclear dumbbells using cell theory

and isobaric ensemble Monte Carlo simulations.  Calculations for six cases of L* (bond

length) and σ* (sphere diameter ratio) near the homonuclear limit are discussed with two

base-centered monoclinic orientationally-ordered crystal structures which have been

considered.  The two crystal structures exhibit nearly identical properties at freezing within

the accuracy of the calculations for the cases we present.  The reduced pressure at

coexistence increases with decreasing σ*.
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1. INTRODUCTION

Problems of considerable current interest are determinations of solid-liquid

equilibrium and the structure of the coexisting solid from molecular shape and

intermolecular interactions.  Since the phase transition is strongly influenced by the steric

interactions of the molecules, a purely repulsive model can serve as a basis to which

perturbations of van der Waals and multipole forces can be added.

Recently, Monson and co-workers have modeled the solid phase of systems of hard

homonuclear dumbbells [1,2] and other rigid assemblies of hard spheres [3] by Monte Carlo

simulations and, for dumbbells, by the much more computationally economical cell theory

of Lennard-Jones and Devonshire [4,5].  For the liquid they used the Tildesley-Streett

equation of state [6] which was checked with Monte Carlo simulation.  Of particular

interest is the ratio of triple-point temperature to critical-point temperature, and with

perturbative additions to the hard-body models they have qualitatively predicted some of

the highest [2] and lowest values [3] of that ratio occurring in nature.  In addition, the

method has been used to distinguish the relative stability of orientationally ordered and

disordered solids as a function of bond length [7,8] and have qualitatively predicted density

changes on melting.

Our objective is to follow Monson’s very promising methods to study molecules

without reflection symmetry perpendicular to the primary molecular axis, such as methyl

fluoride.  In the present work we consider heteronuclear hard dumbbells, initially as a small

variation from the homonuclear case.  For the solid, we use constant pressure Monte Carlo

simulation with a box shape change [9] and the Frenkel-Ladd lattice coupling technique

[10] as extended to nonspherical particles by Frenkel and Mulder [11] and, independently,

the cell theory of Lennard-Jones and Devonshire [4] to determine the free energy of two

orientationally ordered lattice structures.  For the fluid phase, we use Monte Carlo

simulations in the isobaric ensemble and compare with the equation of state (EOS) of

Maeso and Solana [12].  We then equate the pressures and chemical potentials of each



phase to determine thermodynamic phase equilibrium.  We also consider the high pressure

limit of the solid structure in the parameter space of heteronuclear molecules.

2.  CRYSTAL STRUCTURES OF HETERONUCLEAR DUMBBELLS

Heteronuclear dumbbells are described by two parameters L L A* = σ  and

σ σ σ* = a A  where L is the separation of the centers of the two spheres composing the

dumbbell, and σA and σa are the diameters of the larger and smaller spheres respectively.

The molecule becomes two tangent spheres when ( )L* *= +1 2σ  and becomes spherical

when ( )L* *≤ −1 2σ .  For these reasons, we address only dumbbells with

( ) ( )1 2 1 2− ≤ ≤ +σ σ* * *L  in this paper.

If we place molecules in layers with the larger spheres forming a two-dimensional

hexagonal close-packed array, the dumbbells orient so that the small spheres fall into the

valleys formed by the larger spheres.  The angle which the directors of the molecules make

with respect to the normal to the layer is
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When sinθ L = 1 the smaller spheres may freely fall into the gaps between the larger

spheres.  In this case the dumbbell becomes something resembling a sphere with a

“pimple”.  The pimple can rest in any of the gaps between the larger spheres in a close-

packed arrangement.  In the area between the curve sinθ L = 1 and the line ( )L* *= −1 2σ

in the plane of the heteronuclear dumbbell parameters (see Fig. 1), the solid structure will

be close-packed spheres with the pimples randomly distributed into the gaps between the

larger spheres.

We base the orientationally ordered structures studied in this work on the

monoclinic CP1 structure for homonuclear dumbbells described by Vega et al. [1].  One

heteronuclear structure, which we call CP1a, is obtained by shrinking the top spheres of the

dumbbells in each layer so that the molecules all have the same orientation.  The crystal

structure for CP1a is base-centered monoclinic with a one-molecule basis.  A second



structure which we considered (CP1b) is obtained by shrinking the top sphere of dumbbells

in one layer and the bottom sphere in layers adjacent to it.  The result is alternating layers of

dumbbells pointing up or down.  The structure is base-centered monoclinic with a basis of

two molecules.  Examples of the above structures are shown in Fig. 2.  For σ* = 1 the two

structures have identical close-packing densities, but for σ* < 1, CP1b has a slightly greater

close-packing density than CP1a, with the difference increasing with decreasing σ*.

3. COMPUTATIONAL METHODS

3.1.  CELL THEORY

We use the approach described in [5] modified appropriately for heteronuclear

dumbbells.  In simple cell theory, the configurational partition function of the solid is

approximated as

Q N QN
N= ! 1                                                              (2)

where
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β = 1/ k TB , and ( )u r ,Ω  is the potential energy of a molecule in the cell formed by its

neighboring molecules fixed at their lattice positions.  The five-dimensional integral is

evaluated by Monte Carlo integration where, for efficiency in sampling, the sample volume

for the integration is determined by a random walk of the central molecule in its cell [5].

Also, we employed a Sobol sequence [13] to generate the translational coordinates used in

the integration which gives slightly lower error in the integration than a pseudorandom

number generator for an equivalent number of sample points.  In order to sample the entire

range of solid angle, we found it necessary to perform two random walks: one with the

central molecule starting in its equilibrium orientation, and one with it starting in a

“flipped” orientation.  At high enough densities the flipped orientation often did not

contribute to the free volume.  (This is especially true for molecules with significantly

different sphere diameters.)  The geometry of the cell was chosen to be that of the close-



packed structure expanded to the appropriate density.  We checked our code by comparing

results for homonuclear molecules with those in [5].

3.2.  MONTE CARLO SIMULATION METHODS

In order to determine phase equilibria from Monte Carlo (MC) simulation, we must

calculate the pressure versus density equation of state and the absolute Helmholtz free

energy F at some reference density.  The free energy at all densities then follows by

thermodynamic integration:
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where ( ) ( )f F NkTρ ρ* *= , ρ ρ* = d 3 , p pd kT* = 3 , and d  is the diameter of a sphere

with the same volume as the dumbbell.  For heteronuclear dumbbells we find
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We used constant pressure MC simulation with a box shape change [9] as described

in [1] to calculate ( )p* *ρ  for the various structures.  Most of the simulations were

performed on systems of 96 particles formed by stacking 4 particles in the crystallographic

a and c directions and 6 particles in the b direction.  To examine finite size effects, some

calculations were done for a 192 particle system obtained by doubling the number of

particles in the c direction.  We set the initial a and b directions to coincide with the �x  and

�y  directions respectively.  One MC step (MCS) consisted of an attempt to move each

particle twice and to change the box shape once on average, where a particle move was

chosen to be a simultaneous translation and rotation move.  In a typical simulation we used

from 6×103 to 104 MCS for equilibration and 2×104 MCS for calculating thermodynamic

averages.  We adjusted the step sizes to achieve a translation/rotation acceptance ratio of

approximately 0.3 and a volume change acceptance ratio of 0.05.  We used the order

parameter given in [14] to study orientational ordering and the order parameter in [1] to

study translational order.



To calculate the free energy at a reference density we employed the lattice coupling

method described by Vega et al. [1] due to Frenkel and Mulder [11].  In this procedure the

free energy is written as

( ) ( ) ( )f f f f feins
cm= + + +λ λ λmax max max∆ ∆ ∆1 2 3                                  (6)

where ( )f eins
cm λ max  is the free energy of a non-interacting Einstein crystal with translational

and torsional spring constants λ1 and λ2 having reduced values equal to λmax.  The first

correction ∆f1 accounts for the fact that there is always some interaction of dumbbells at

λ λ= max .  The second correction ∆f 2  links the crystal with spring constant λ λ= max  with

that at λ = 0.  Finally, to account for the fact that the center of mass of the crystal is fixed

in calculating ∆f2, we add the correction ∆f3.  The reader is referred to [1] and [11] for

further details.

In our calculations, the integral to determine ∆f2 was determined by 10 point

Gaussian quadrature with the integrand transformed as suggested in [10]. λmax was chosen

to have a value of 8000 in reduced units.  We checked our code by checking results in the

homonuclear and spherical limits [1,10] and by checking for thermodynamic consistency in

the integration of the pressure equation of state.  The values of the reference free energies

we obtained are shown in Table I.

3.3.  FLUID EQUATION OF STATE

In order to reduce the total computation required to compute the solid-fluid

equilibrium, we investigated the suitability of the analytic equation of state given by Maeso

and Solana [12] for the heteronuclear dumbbell fluid.  To test its accuracy we performed

constant pressure MC simulations of the fluid phase for each ( )L*, *σ  studied and also

looked for agreement with the Tildesley-Streett equation in the homonuclear limit [6].  At

low pressures the analytic EOS and the MC data agree well with each other, but at moderate

to high pressures the agreement worsens with the analytic equation overestimating the

isothermal compressibility of the fluid (see Fig. 3).  The analytic equation still proved

useful, in that we could use it to calculate the free energy at a density low enough that the



analytic and MC pressures agreed well, and then only perform MC simulations at higher

pressures to obtain the necessary data to find the phase equilibrium.

4. RESULTS

As the pressure in the constant pressure (MC-NPT) simulations was decreased,

small changes occurred in the solid structure that were important to include in the lattice

coupling procedure.  In addition to small changes in the simulation box shape, θL also

tended toward smaller values than it assumes at close-packing.  A summary of the

coexistence properties between the ordered solid structures and the fluid is shown in Table

II.  We estimate that the coexistence densities determined by Monte Carlo simulations are

accurate to about 1%, the largest source of error coming in the quadrature involved in the

lattice coupling.  The cell theory calculations, where we took the geometry to be that at

close-packing expanded to the desired density, overestimate the densities at freezing by 1 to

6% when compared to the MC results.  The results for CP1a and CP1b structures are

indistinguishable within the statistical error of the Monte Carlo calculations for σ* = 0.95

and σ* = 0.90.  This is similar to the results of Vega et al. with the CP1, CP2 and CP3

structures in the homonuclear case [1].  Both the Monte Carlo and cell theory results show

an increase in pressure with decreasing σ* at solid-fluid coexistence (Fig. 4).

5. CONCLUSIONS

This work has investigated solid-fluid equilibria of hard heteronuclear dumbbells

using both Monte Carlo simulation and cell theory to calculate independently the solid

phase free energy.  In particular, two ordered solid structures were studied (CP1a and

CP1b).  The equation of state of Maeso and Solana, while agreeing well with Monte Carlo

results at low pressures, was found to be insufficiently accurate for calculating solid-fluid

equilibrium without using MC data to extend its range.

We find that a change in σ* of only 5-10% from the homonuclear limit has a

significant effect on the coexistence properties.  For the dumbbell shapes we considered, the

CP1a and CP1b structures were indistinguishable by their thermodynamic properties at

freezing, which is not surprising since the structures have nearly identical close-packing



densities for σ* ≅ 1.  For lower σ* where the close-packing densities of the two structures

differ more, simulation and/or cell theory may be able to distinguish the thermodynamically

preferred structure.  For these cases and for dumbbells with lower L* it will likely be

important to consider the possibility of a plastic crystal phase.  We will investigate this in

future work.
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Table I.  Free Energy Calculations for hard heteronuclear dumbbells for the CP1a and CP1b

solid phases.  ρ* is the reduced density. Rc and Rb are the ratios (c/a)/(c/a)0 and (b/a)/(b/a)0

(ratios of box length ratios to box length ratios at close-packing) respectively, fref is the

absolute Helmholtz free energy divided by NkT, and fCT is the free energy divided by NkT at

ρ* calculated by cell theory with Rc = Rb = 1  The result labeled by a dagger (†)is from

reference [1].  NA means “not available” as the information was not given in the reference.

All calculations are for 96 particle systems except for those marked with (*) (144 particles)

and with (**) (192 particles).

L* σ* Lattice ρ* Rc Rb fref fCT

0.8 0.95 CP1a 1.219 0.97 0.97 12.19 12.55

0.8 0.95 CP1b 1.215 0.96 0.98 12.04 12.82

0.8 0.90 CP1a 1.212 0.99 0.99 12.86 13.89

0.8 0.90 CP1b 1.215 0.97 0.99 12.87 14.23

0.6†(*) 1.00 CP1 1.289 0.96 NA 12.28 12.49

0.6(*) 1.00 CP1 1.289 0.96 1.00 12.30 12.49

0.6 0.95 CP1a 1.277 0.97 0.98 12.47 12.63

0.6(**) 0.95 CP1b 1.289 0.98 0.99 12.80 13.47

0.6 0.95 CP1b 1.243 0.96 0.98 11.40 12.00

0.6 0.90 CP1a 1.288 0.99 0.99 13.59 14.81

0.6 0.90 CP1b 1.281 0.97 0.99 13.11 14.47

0.5 0.95 CP1a 1.253 0.97 0.98 11.09 11.46

0.5 0.95 CP1b 1.252 0.96 0.98 11.18 11.65

0.5 0.90 CP1a 1.231 0.97 0.99 11.09 12.00

0.5 0.90 CP1b 1.212 0.97 0.98 10.51 11.64



Table II.  Solid-fluid equilibria of hard heteronuclear dumbbells as obtained from MC

simulation and cell theory (CT).  The results labeled by (a), (b) and (c) are from references

[1], [7], and [5] respectively.  Results for a 192 particle system are labeled by (**).

L* σ* Lattice ρf*(CT) ρf*(MC) ρs*(CT) ρs*(MC) p*(CT) p*(MC)

0.8 1.00 CP1 1.124 1.105(b) 1.251 1.224(b) 40.02 36.47(b)

0.8 0.95 CP1a 1.125 1.101 1.220 1.205 40.90 36.09

0.8 0.95 CP1b 1.150 1.097 1.238 1.196 46.72 35.36

0.8 0.90 CP1a 1.158 1.105 1.232 1.181 59.45 40.62

0.8 0.90 CP1b 1.168 1.098 1.236 1.174 64.69 38.94

0.6 1.00 CP1 1.162(c) 1.146(a) 1.276(c) 1.249(a) 41.23(c) 37.97(a)

0.6 0.95 CP1a 1.158 1.150 1.255 1.243 42.85 40.71

0.6 0.95 CP1b 1.176 1.151(**) 1.262 1.254(**) 48.39 40.84(**)

0.6 0.95 CP1b 1.176 1.143 1.262 1.237 48.39 38.86

0.6 0.90 CP1a 1.229 1.172 1.288 1.247 77.76 49.92

0.6 0.90 CP1b 1.228 1.163 1.283 1.231 77.50 46.46

0.5 1.00 CP1 1.174 1.150(b) 1.279 1.235(b) 41.13 36.37(b)

0.5 0.95 CP1a 1.161 1.142 1.275 1.250 42.43 38.06

0.5 0.95 CP1b 1.189 1.149 1.263 1.252 50.72 39.62

0.5 0.90 CP1a 1.231 1.167 1.285 1.244 69.76 44.98

0.5 0.90 CP1b 1.242 1.165 1.304 1.232 76.20 44.42



FIGURE CAPTIONS

Fig. 1  The L*, σ* parameter plane.  The solid lines are L*  = (1+σ* )/2 and L*  = (1-σ* )/2.

The dotted line is where sin(θL) = 1.

Fig. 2  CP1a (top) and CP1b (bottom) structures shown in the initial configurations of the

MC-NPT simulations.

Fig. 3  The equation of state of Maeso-Solana [12] (solid line) and points with error bars

from MC-NPT calculation for L*  = 0.6, σ*  = 0.90.

Fig. 4  The dependence of pressure at coexistence on σ* .  Note that here we have plotted

pσA/kT instead of p*.  The solid circles are due to Vega et al. [1,7] and represent the

homonuclear limit (σ* = 1).   The squares and triangles are the Monte Carlo results for σ* =

0.95 and σ* = 0.90 respectively.  The hollow (solid) shapes represent CP1a (CP1b) results.

PC denotes a plastic crystal phase.
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